Functional Analysis

Bartosz Kwaśniewski

Faculty of Mathematics, University of Białystok

Lecture 6
Hilbert spaces

math.uwb.edu.pl/~zaf/kwasniewski/teaching

Inner product

Def. Inner product space (or pre-Hilbert space) is a linear space H over $\mathbb{F} = \mathbb{R}, \mathbb{C}$ equipped with an **inner product**, that is a function $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{F}$ satisfying

 $(x,x) \ge 0$ and (x,x) > 0 for $x \ne 0$

(positive-definiteness)

(antisymmetry)

- (linearity in the first argument)

for x, y, $z \in H$ and $\alpha, \beta \in \mathbb{F}$.

Hilbert von Neumann

Rem. Conditions (2) and (3), imply

 $\langle x, \alpha y + \beta z \rangle = \overline{\alpha} \langle x, y \rangle + \overline{\beta} \langle x, z \rangle$ (antilinearity in the second argument)

Hence the inner product is a sesquilinear form!

If $\mathbb{F} = \mathbb{R}$, then (3) assume the form $\langle x, y \rangle = \langle y, x \rangle$. Hence a real inner product \equiv a bilinear symmetric form!

Ex1.
$$\langle x,y\rangle = \sum_{k=1}^n x(k)\overline{y(k)}$$
 defines an inner product on $H = \mathbb{F}^n$.

Ex2. $\langle x,y\rangle = \sum_{k=1}^{\infty} x(k)\overline{y(k)}$ defines an inner product on the space of square summable sequences $H = \ell^2$.

Ex3. $\langle x, y \rangle = \int_{\Omega} x(t) \cdot y(t) d\mu$ defines an inner product on the space of square integrable functions $H = L^2(\mu)$.

Rem. Hölder's inequality for p = q = 2, that is

$$\int_{\Omega} |x(t)y(t)| \, d\mu \leqslant ||x||_2 \cdot ||y||_2,$$

is often called **Schwartz ineguality**. It guaranties that the inner product on is well-defined : $x, y \in L^2(\mu) \Rightarrow x \cdot \overline{y} \in L^1(\mu)$. Notice that

$$||x||_2 = \left(\int_{\Omega} |x(t)|^2 d\mu\right)^{\frac{1}{2}} = \sqrt{\langle x, x \rangle}.$$

Def. The **norm** of $x \in H$ in an inner product space H is given by

$$||x|| := \sqrt{\langle x, x \rangle}.$$

Lem. $||x+y||^2 = ||x||^2 + 2\operatorname{Re}\langle x,y\rangle + ||y||^2$ for $x,y\in H$ "shortened multiplication formula"

(a+b)^2 = a^2 + 2ab + b^2

Thm. (abstract Schwartz inequality)

For any x, y in an inner product space we have

$$|\langle x, y \rangle| \leqslant ||x|| \cdot ||y||.$$

Proof: Let $\lambda \in \mathbb{F}$ be such that $|\langle x,y \rangle| = \lambda \cdot \langle x,y \rangle$ and $|\lambda| = 1$ $(\lambda = e^{-i\arg\langle x,y \rangle})$. For any $t \in \mathbb{R}$ we have

$$0 \le \langle t\lambda x + y, t\lambda x + y \rangle = ||t\lambda x||^2 + 2\operatorname{Re}\langle t\lambda x, y \rangle + ||y||^2$$
$$= t^2 ||x||^2 + 2t|\langle x, y \rangle| + ||y||^2.$$

Hence the function $f(t) := t^2 ||x||^2 + 2t |\langle x, y \rangle| + ||y||^2$ is postive.

Thus the discriminant is negative: $\Delta = 4|\langle x, y \rangle|^2 - 4||x||^2||y||^2 \le 0$.

After transformations this gives $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$.

Cor. The function $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$ is a norm on an inner product space.

Proof: $||x|| = 0 \iff \langle x, x \rangle = 0 \iff x = 0$. For $\lambda \in \mathbb{F}$ we have

$$\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda \overline{\lambda} \langle x, x \rangle} = \sqrt{|\lambda|^2 \langle x, x \rangle} = |\lambda| \cdot \|x\|.$$

For $x, y \in H$ we have

$$||x + y||^2 = ||x||^2 + 2\operatorname{Re}\langle x, y \rangle + ||y||^2 \overset{\operatorname{Re} z \leqslant |z|}{\leqslant} ||x||^2 + 2|\langle x, y \rangle| + ||y||^2$$

$$\overset{Schwartz}{\leqslant} ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Taking the square root we get the triangle inequality

Def. Hilbert space = inner product space, which is complete in the norm $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$.

the completion of H. Therefore,

the complemetion of an inner product space is a Hilbert space!

The parallelogram law states that: the sum of the squares of the lengths of the sides is equal to the sum of the squares of the lengths of the diagonals

Theorem.

In every inner product space the parallelogram law holds:

$$\forall_{x,y \in H} \qquad \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$$

and the inner product is determined via the polarization identity:

$$\langle x,y\rangle = \begin{cases} \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2), & \text{when } \mathbb{F} = \mathbb{R}, \\ \frac{1}{4}\sum_{k=0}^3 i^k \|x+i^ky\|^2, & \text{when } \mathbb{F} = \mathbb{C}. \end{cases}$$

Conversely, if $(H, \|\cdot\|)$ is a normed space in which the parallelogram law holds, then the polarization formula gives an inner product on H such that $\|x\| = \sqrt{\langle x, x \rangle}$, so H is an inner product space.

Dowód: ' \Longrightarrow ' \longleftarrow ' for the ambitious.

Cor. A Banach space $(X, \|\cdot\|)$ is a Hilbert space if and only if the norm $\|\cdot\|$ satisfies the parallelogram law.

Prop. $L^p(\mu)$, $p \in [1, \infty)$, is a Hilbert space if and only if p = 2.

Proof: We $L^2(\mu)$ is a Hilbert space, where $\langle x,y\rangle=\int x\cdot \overline{y}\,d\mu$. Assume that parallegram law holds in $L^p(\mu)$. Take any disjoint A,B with $0<\mu(A),\mu(B)<\infty$. Putting $x:=\mathbb{1}_A$ and $y=\mathbb{1}_B$ we have

$$||x + y||_{p}^{2} + ||x - y||_{p}^{2} = 2\mu(A \cup B)^{\frac{2}{p}},$$

$$2\left(||x||_{p}^{2} + ||y||_{p}^{2}\right) = 2\left(\mu(A)^{\frac{2}{p}} + \mu(B)^{\frac{2}{p}}\right).$$

Dividing sides by sides $1=\left(\frac{\mu(A)}{\mu(A\cup B)}\right)^{\frac{2}{p}}+\left(\frac{\mu(B)}{\mu(A\cup B)}\right)^{\frac{2}{p}}.$ Hence putting $\lambda_1:=\frac{\mu(A)}{\mu(A\cup B)}$ and $\lambda_2:=\frac{\mu(B)}{\mu(A\cup B)}$ we get numbers satisfying $0<\lambda_1,\lambda_2<1, \qquad \lambda_1+\lambda_2=1=(\lambda_1)^{\frac{2}{p}}+(\lambda_2)^{\frac{2}{p}}.$

These relations imply that p=2, because if p>2 then $\lambda_i>(\lambda_i)^{\frac{2}{p}}$, and if p<2, then $\lambda_i<(\lambda_i)^{\frac{2}{p}}$ dla i=1,2.